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A. Summary of Progress - 7/15/96 to 7/14/99

Significant progress was made on all of the theoretical issues. However, as
mentioned in our previous progress reports, we encountered some interesting
problems related to implementation issues. We devised a number of approaches to
solve these problems, and this was the subject of considerable work during the last
year of the project. For the most part, the difficulties have been overcome. An
additional major theoretical question that we considered centered on methods for
database indexing for content based retrieval and geometric hashing. Approaches to
this question were addressed in two recent papers, but further improvements in the
methods and algorithms are required. Finally, as a result of this research, we are
proposing a new paradigm for geometric feature recognitici in the full perspective
case that shifts the focus to certain toric or generalized toric subvarieties in projective
space. The resulting equations should be more global in character and less sensitive
to instablity resuiting from geometric degeneration and/or noise. With the help of Dr.
Greg Arnold at the Air Force Research Laboratory at Wright Patterson Air Force Base,
we have done some preliminary work that indicates this approach is feasible and will
be considerably more robust than previous methods. We hope to make this the
subject of our next proposal to AFOSR.

As previously reported, we have completely determined the object/image equations
for configurations of point and line features in the perspective case. The resuits
appear in the papers cited below. We also focused on Grobner basis and sparse
resultant techniques (including Dixon and KSY resultants) to provide a symbolic
computational approach to generating the object/image equations for various sets of
object features and other camera/sensor madels. These symbolic computational
aspects were discussed in a paper presented at the ISSAC meeting in Hawaii.
Grobner bases methods proved intractible - they simply didn't work-on computations




of the size we were dealing with. The best method proved to be a modified KSY
resultant, working modulo large primes, and specializing different subsets of the
variables to fixed numericai vaiues. Once the degrees of the variables in the
objectimage equations were determined, we could interpolate to get the actual
equations by taking lots of object/image pairs. So far that hasn't been necessary, as
the modified KSY answer has proved to be the right one in characteristic zero.
Computational swell is still a problem however. For example, at an intermediate
stage in the computation of the object/image equation for the recognition of
configurations of 6 line segments, the computation occupied 53MB. However, the
final answer collaspes to a relatively small polynomial.

We also made some progress in our effort to explore the feasibility and robustness
of several algorithms based on our results (making use of the geometric invariant
theory and computational algebraic geometry). These algorithms have been used to
index various sorts of databases for content-based retrieval. The computation of the
object/image equations is of course a pre-compute, once found for a given feature set
they are easily evaluated in real-time to test for objectimage matching. The real
challenge is to do geometric hashing using the resulting equations when a very large
database is involved.

We did develop a multi-dimensional access scheme based on a somewhat
complicated hashing technique that works mildly well. For large databases (e.g.
10,000 items) we can do recognition without accessing more than about 15% of the
items in worst cases. Moreover the method seems to get more efficient as the size of
the database increases. A more advanced method based on a sophisticated
polyhedral subdivision scheme is under investigation.

We also have a demo we built in JAVA that will recognize aircraft types in photos.
We have a 3D database made using line drawing from Janes. The user selects
obvious key points, like the nose, wing tips, etc. in the photo and our aigorithms -
evaluate the object/image equations (using the 3D and 2D invariants) to come up with
a good candidate aircraft for the one in the photo. The method is completely view
independent. The Sarnoff Corporation in Princeton, New Jersey has an early version
of this demo which uses our approach. It has been of interest to the DOD Intellignece
community as an aide to photo interpreters. Finally, we have become interested in the
potential of our methods for video indexing where dynamic motion is involved.

Most recently we have begun a collaboration with Air Force researchers at Wright
Patterson. They are interested in applying our techniques to sequences of images
and to other types of imagery, most notably SAR images. Our contacts at Wright
Patterson at Drs. Greg Arnold and Vince Velten of AFRL/SNAT (Target Recognition
Branch). We hope to submit a proposal based on this collaboration to AFOSR in
the near future.

Also, we were put in contact with engineers at Vexcel Corp. in Boulder, CO by
Dr. Nachman of AFOSR. We visited Vexcel in summer 1999 to discuss our resuilts.




B. Pubiications

We have eight papers that have been accepted for publication and others in
preparation, inclucing a joint paper with Lewis and Nakos that will likely appear in the
Journal of Symbolic Computation. Copies of the two newest published works are
attached. Copies of the others were attached to our previous reports.
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*” IN SIMULATION

Solving the recognition problem for six lines
using the Dixon resultant’

Robert H. Lewis®*", Peter F. Stiller*®

2Department of Mathematics, Fordham University, Bronx, NY 10458, USA
®Department of Mathematics, Texas A&M University, College Station, TX 77843-3368, USA

Abstract

The “Six-line Problem” arises in computer vision and in the automated analysis of images. Given a three-dimensional (3D)
object, one extracts geometric features (for example six lines) and then, via techniques from algebraic geometry and geometric
invariant theory, produces a set of 3D invariants that represents that feature set. Suppose that later an object is encountered in
an image (for example, a photograph taken by a camera modeled by standard perspective projection, i.e. a “pinhole” camera),
and suppose further that six lines are extracted from the object appearing in the image. The problem is to decide if the object in
the image is the original 3D object. To answer this question two-dimensional (2D) invariants are computed from the lines in
the image. One can show that conditions for geometric consistency between the 3D object features and the 2D image features
can be expressed as a set of polynomial equations in the combined set of two- and three-dimensional invariants. The object in
the image is geometrically consistent with the original object if the set of equations has a solution. One well known method to
attack such sets of equations is with resultants. Unfortunately, the size and complexity of this problem made it appear
overwhelming until recently. This paper will describe a solution obtained using our own variant of the Cayley-Dixon-Kapur-
Saxena-Yang resultant. Thcre is.reason to believe that the resultant technique we employ here may solve other complex

_polynomial systems. © 1999 IMACS/Elsevier Science B.V. All rights reserved.

Keywords: Dixon resultant; Fermat program; Six-Line Problem

1. Introduction

The recognition problem for six lines (Six-Line Problem) arises in computer vision and in the
automated recognition of three-dimensional objects. From an object, six lines are extracted, and from
those six lines, nine three-dimensional (3D) invariants are computed as a kind of signature. Later, a
two-dimensional “snapshot” of some possibly different object is obtained from an arbitrary

* Corresponding author.

'Expanded version of talks presented at the Maui IMACS meeting, July 1997, and the Prague IMACS meeting, August
1998.

2partially supported by the Office of Naval Research.

3partially supported by the Air Force Office of Scientific Research.
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perspective, and from this snapshot six lines are extracted leading to the computation of four two-
dimensional (2D) invariants. The question is: Is the snapshot a picture of the original object, ie. a
perspective projection of the original six lines? We desire a method that can rapidly and reliably decide
if a given set of 2D data represents the same 3D object, or at least that a given 2D set ‘cannor represent
that object.

Using algebraic geometry, Stiller [5] showed that there should be a single equation relating the nine
3D invariants to the four 2D invariants. He reduced the problem to a system of four equations in 16
variables involving three additional variables (actually four, but one may be set to 1). The resulting four
polynomial equations d; = 0,i=1,...,4 in the three new variables are quadratic and involve the
9-+4=13 invariants as parameters in the coefficients. The image is consistent with the original object if
and only if the four equations have a solution in the three variables (subject to a mild nondegeneracy
constraint).* Note that we do not need to know what the values of the three auxiliary variables actually
are, only that a solution exists. Image recognition questions of this general type, but for points, were
considered by Quan [4] and Stiller et al. [6].

The solution of systems of polynomial equations is important in many fields of applied mathematics.
One of the classic methods of solving such systems is with resultants. In general a resultant is a single
polynomial derived from a system of polynomial equations that encapsulates the solution (common
zeroes) of the system. The Sylvester Determinant is the best known method of computing a resultant.
However, it is not a realistic tool for solving equations of more than one variable. Other methods exist,
which usually compute not the resultant itself but rather a multiple of it, containing extraneous factors.
The standard Macaulay resultant yields no information for our problem since both the numerator and
denominator determinants are identically zero. Another resultant method is that of Dixon (generalizing
Cayley), recently extended by Kapur et al. [2]. The authors of that paper show that their method must
work if a certain condition holds. The condition is rather strong, and in our case it is not satisfied. Yet
we are able to make the method work anyway. This suggests to us that more theoretical work should be
done on the Dixon-Kapur-Saxena—Yang approach, and that probably our approach here will succeed
for many problems of interest.

2. The basic geometric approach

The moduli space of equivalence classes of (semi-stable) six-tuples of lines in P?, projective 3-space,
under the action of projective transformations (the matrix group PGLa, 4 x4 matrices modulo scalars) is
a rational variety of dimension 9. We can thus expect to find 9 functions of the parameters defining the
lines which are invariant, in the sense that they provide coordinates on a Zariski open set of the moduli
space. We explain briefly how this is done. It is sufficient to work in a Zariski open subset of the set of
6-tuples of lines, so we will not hesitate to impose various general position assumptions that will
become apparent below.

Let ¢,, £5, €3, £4, £s, and £¢ be six lines in space. We assume 2,, £, and £5 are mutually skew (our first
general position assumption). Without loss of generality, we can complexify and work in complex
projective space P?. Since lines in P> are parameterized by the 4-dimensional (complex)

4We do not assume homogeneity. Thus, we expect n+1 equations in n variables 10, in general, not be solvable. The resultant
places a constraint on the 13 coefficient parameters that characterizes solvability.
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Grassmannian, G(2,4), of two-planes through the origin in (complex) four-space, an ordered six-tuple
(4,...,4s) of lines can be viewed as a point in the 24-dimensional manifold X = G(2,4) x - -- x
G(2,4). The group PGL, of projective linear transformations acts on P* sending lines to lines and
hence acts on X sending a 6-tuple of lines to another 6-tuple. We are interested in the quotient
X = X/PGL, of X by this action. Since PGL, is 15-dimensional, we expect X to have dimension 9. For
various technical reasons (in fact to get a good quotient space) we must limit ourselves to an open dense
subset, in fact a Zariski open subset, [/ of X, and construct the quoiient U = U/ PGL,. For example, the
requirement that ¢, £,, and ¢; be mutually skew is one of the conditions defining U.

Now lines in projective space correspond to planes through the origin in 4-space, and two skew lmes
correspond to two planes that intersect only in the origin. We can therefore move ¢, to the z, w-plane
and £, to the x, y-plane by a 4 x4 invertible matrix. In this position, £, corresponds to the z-axis in space
and ¢, corresponds to a line at infinity that meets both the x- and y-axes. Specifically the points
(0:0:1:0) and (0:0:0: 1) will be on ¢; and likewise, £, will contain the points (1 :0:0: 0) and
(0: 1: 0: 0).

Having moved ¢, and ¢, to the above “canonical” positions, the 4 x4 invertible matrices that fix these
two lines have the form: .

a b
c d 0
M=1.. )]
0.0Eef
0 0 : g h

with ad — bc # 0 and eh — gh # 0.

Now /5 is assumed to be skew to both ¢, and 4,. Suppose (ml nl ry:sy) and (my:ny i ry:s,) are
two distinct points on {3, which is then the line a(m; : ny : ry : s;) b B(m2 : my : 1y : 53) = (am+
Bmy 1 any + fBny : ary + fr; : as; + Bs;) as (o : B) runs through all points in P'. If ¢; were to meet
¢), we would have am,; + fm; = 0 and an; + n, = 0 for son:e non-trivial (¢, 8). This can happen if

and only if det (:1‘ ’:j) = 0. Thus ¢; being skew to £, means det <nm1 ':2) # 0. Likewise £,
1 1 2

’ rn r
skew to ¢, means det (sl s2> # 0.
1 52
We can choose:

ab_mlmz_l
c d)] \n n

and

e f\_(n n\"
g h) \s1 5

so that the 4x4 matrix (1) above moves ¢; to the line through (1:0:1:0) and (0: 1:0: 1) without
moving ¢, or &,.
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The set of 4x4 matrices fixing £,, £», and ¢3 consists of all matrices of the form:

absl\

\*ECd) |

where ad — bc # 0. In other words, we are reduced to finding invariants for an action of PGL,; on the

remaining three lines.
Assume now that ¢, is skew to ¢; and goes through the points (m; : 7, : 7| : §) and

(my : Ay = 72 1 §2) . Our group, PGL,, which fixes ¢,, 5, £3, will act on ¢, as follows:

a b
% ﬁ'l] f;lz
c d nyg  m
, det(a b)#O,
- . c d
a b n o n
* 51 &
c d

where we will have det(r.lm1 mz) # 0 (because ¢, is skew to {;). Here the line is represented by a
1

4x2 matrix whose columns are the homogeneous coordinates of two points on the line. Now without

loss of generality, we can assume <r~nl rflz) = ( ! O).
. X ng nm 0 1
The action yields: '

a b
c d -
a b ;‘1 72
c d 3‘1 3‘2
which is a new line £ going through the two points given by the columns of this 4 x2 matrix.

Choosing two different points on £ amounts to postmultiplying by an arbitrary invertible 2x2 matrix.

-1
We can choose (g Z) for this purpose. This means that £ can be given by:

1 0
0 1
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where N is the 2x2 matrix:

vofa b)Y (h B (ab B
“\c d i85 c d) ~
In other words, the orbit of £ is just the orbit of N = "

n N2
The orbits with N a scalar matrix, N = (O 7_), are just points, i.e. they are fixed points of

n .
1 12) under conjugation.

the action. The nature of the orbits with N not scalar depends on the Jordan form of N. The
possibilities are:
Case 1:

)1\ . Here the orbit is 2D since the matrices which fix (3 i) under conjugation (i.e.

0

. Al a b
commute with (0 )\) are othe form (0 a)a;éo.
A0

0

Case 2: ( 0

A\ > with A; # ),. Here the orbit is 2D since the matrices which fix (A' 0 )
2

under conjugation are of the form (8 0).

We will assume that £, is in case 2, which is the generic case. In other words, we will assume that

3’1 52
(1:0:A;:0)and (0:1:0:)y) or the line through (1:0: A;:0) and (O:l:O:A,).Thisambiguity 

(rl f2> has distinct (unequal) eigenvalues. Thus we can move £, to'_either the line 'through.

arises because Jordan form in this case is not unique! It can be either (3‘ f ) or (6\2 )(\) ) Now
2 !

fix £, to be one of these two lines. (It does not matter which; moreover we will never in practice need to

make a choice between the two.)
The transformations that fix £,, {5, {3 and £, take the form:

0 d

modulo scalar matrices. Thus we have essentially reduced the group to C* x C*/C* = C* where the C”
in the quotient is embedded diagonally in C"'xC". We say “essentially”, because there is still a Z,-
action lurking that switches (6\’ ;\) > and (32 )(\) ) This is accounted for below.
2 1
If we assume, in addition to {4, that {5 and {4 are skew to £;, then we can reinterpret our problem as
one of finding invariants for the action of PGL, on the three-fold product of 2x2 matrices by
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conjugation in each factor; specifically:
(NayNs,Ng) — (AN2A™' ANsA™! ANGA™!)

for A an invertible 2x2 matrix representing an element of PGL,. Here ¢,, i = 4.5, 6 is the line passing l
through the points in P? which are the columns of the 4x2 matrix:

1 0
01

N;
A known set of invariants are the traces of Ny, Ny, N3, N7, N2, N2, NiN,, N\Ns, NxN3 and N,N,N;
which have one relation among them. We take a different approach. Since we have assumed that N, has

distinct eigenvalues, we can find an A which conjugates N, to either (31 f ) or (32 )(‘) )
Consider the following subgroup G of PGL,: ? ]

G={(g 2>’a7é0’d7é0 or (2 g>,b#0,6#0}modscalars.

Action by G leaves N, in diagonal (Jordan) form. Thus we can reduce our action to one of G acting on
(CxC~A)xNsxNg where A is the diagonal in CxC and where we identify (A}, A2), A} # Az, in

. A 0
CxC—Awnh(O /\2).

. - . . a 0 .
We now try to move s to a canonical position using just the C™ action of ( ) mod scalars. (This

0 d

does not depend on our choice for the position of £,.) If we assume s is skew to £, so that it can be
taken to go through the points (1:0:nyy:ny;) and (0: 1: ny5 : nyy), then the group acts via:

a 0 \
: *
1 0 a 0
0 4 0o 1| _|o a4
ny nyp | |any oanp |
. a 0 nyy  n» dny; dnx
x
0 a)
which is the same line as:
1 0
0 1
my o Snp
%’lzl ny

We will assume that £s is sufficiently generic so that nj; # 0 and ny # 0. We can then normalize

(n“ n”) so that nj; = ny; = g # 0, by choosing (d/a) = \/ny2/ny.

np np
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Note that:

0 »b nygy np 0 b -l= n; %nn
c 0 ny nxp c 0 fn ny )
ny g

Thus if we normalize Ns to <g , 8§ #0, then the elements in the éubgroup G which

22

preserve our ‘“‘normal form”, namely that N4 be dlagonal and that N5 have equal off-diagonal elements
(non-zero), form a subgroup H:

a={(5 2) 2 U{(E %) axofUI(C §) exof I &) oo}

mod scalars. Clearly H < PGL, is a finite group isomorphic to Z;xZ.

We are therefore reduced to the action of this finite group H on U = (C x C — A) x (C* x C*)
xC* ¢ C° with coordinates (A;, Az, 11, 1122, & P11» P12, P21, P22) Where £¢ is assumed skew to ¢, so that
it can be represented by:

1 0
0 1
P P2
P2y p2

Note that UCC? is defined by g # 0 and \; # Ay, i.e. by g(A; — Az) # 0. Thus U is an affine vanety
with coordinate ring:

1 .
R=C|A, A, ,nn,nzz,g,g,Pn,Plz,sz,pzz

1
Al — X\
and function field:
F = C(\, A2, n11,122,8,P11,P12, P71, P22)-

The desired quotient variety U/H is affine with coordinate ring given by the invariants R" and function
field given by the fixed field F™. # One can show that this variety is rational, i.e. F” is a field of rational
functions in nine algebraically independent quantities — the desired invariants.

To generate the desired equations one works with the nine “invariants” A;, Az, 711, 722, &, Pi1> P12
P21, and pa, (modulo the action of H = Z/2Z x Z/27Z). In the plane one will have four standard
invariants q;, g2, g3, g4 Which are rational expressions in the coefficients of the six lines a;x + b;y + ¢;
=0 viewed in P? as the points (a;:b;:c), i=1,...,6. These are q; = gs0/qs2, g2 = gs.1/4s2,
93 = 96,0/962, 94 = 96,1/46,2 in the notation of [6].

Now one can use the above invariants, and the description of the relationship between six lines in 3D
and six lines in 2D as a correspondence (in the sense of algebraic geometry), to produce a system of
four equations in 17=9+4+4 variables, nine 3D invariants, four 2D invariants, and four variables
which represent an invertible 2x2 matrix:

ayy ap
( ), apay —anap #0

azy ax
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acting by conjugation as above on:

((Al 0) (nn g) (Pn Pn))
0 X/'\g nn/)'\pu pP2))

The key result is that it can be shown that these 3D configurations for fixed A;, A,, ..., p2> and
variable a;; sweep out a Zariski open set of the 3D set of all possible 2D equivalence classes obtainable
by all possible perspective projections. The resulting four equations appear in Appendix A. Note they
are linear in the 2D invariants, quadratic in.the 3D invariants and homogeneous quartic in the a;. By
eliminating the a;; one arrives at the desired object/image equation. This is the problem we take up. One
complication is that the system always has degenerate solutions a; where ay;a2; — aj2a2; = 0. This is
what causes the classical Macaulay resultant to fail.

The reader may wonder about the fact that A), Ay, ..., p2; are not quite invariant and that a Z,xZ,
action still lurks. This causes no serious problem. In fact a test of the final single resultant equation
relating Ay, ..., P22, 41, - - -, g4 Shows it to be invariant under this action. For simplicity we stick with
these “‘not quite invariant” invariants.

3. The basic computational approach

We have:

Nine 3D parameters: Ay, Ay, 111, 122, & P11s P12> P21> P22-

Four 2D parameters: q,, g2, g3, 4a-

Three (initially four) conversion variables: (a;; = 1), ay2, a2, a2».

Four quartic equations (see Appendix A) in the variables a;; and the 13 parameters.

The four equations have the useful property that g; appears only in equation i, and only with degree 1.
It is therefore quite easy to solve for each g; in terms of the other variables. While this is an unnatural
thing to do from the standpoint of the Six-Line Problem, we wiil exploit it later to check answers.

The Cayley-Dixon method to eliminate the three variables a; may be summarized as follows (see [2]
for details):

¢ Adjoin three new auxiliary variables, 7, s, ¢.
o Create the Dixon matrix, DM. Then compute the Dixon polynomial:
det(DM)

am = (r—an)(s—an)(t—axn)

o If desired, we may work with a certain “‘fixed object,” i.e. a set of numerical 3D invariants. Stiller
provided an algorithm for creating such test cases of 3D (and corresponding 2D) data sets. The data
are integers or rational numbers. We may then substitute into dm some or all of the nine 3D
numerical values. This reduces the size and complexity of dm. 1

o Create the second Dixon matrix by extracting coefficients from dm in a certain way. These
coefficients are polynomials in the four 2D parameters g;, i = 1,...,4 and those 3D parameters that
remain from the previous step. It is a 105x 105 matrix.
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¢ The determinant of this second matrix is the classical Dixon Resultant. If there is a common solution of
the original system of four equations, then this determinant must be 0. Ideally that provides an equation
that must be satisfied by the parameters. However, in our case (and in many others) it is identically 0.

But that is not the end of the story. The Kapur-Saxena-Yang (KSY) method continues:

o Extract the non-zero rows and columns from the second matrix. This leaves a 51x56 matrix. Call
this the third matrix.

¢ If a certain condition holds on the third matrix, compute the determinant of any maximal rank
submatrix. These polynomials must vanish if the original system has a solution.

In other words, these necessarily nonzero polynomials, any of which we w111 call ksy play the role of
the classical Dixon Resultant. We will have more to say about the ‘““certain condition™ in Section 5.

4. Phase One of the computation

Unless some of the numerical 3D parameters from a “real” object are substituted into dm before the
creation of the second Dixon matrix, the polynomials ksy will be hopelessly large for any existing
computer system.’ In the first phase of the project, we substituted rational values for all nine 3D
parameters, thus reducing the goal to computing a resultant for that one object — a polynomial in the
four 2D invariants q,, 43, 43, 4.

¢ Input the numerical (rational or integral) data for the nine 3D parameters. For example );, A, ...,
p22=3,4,2,3,2,3,1,2, 12. ~

¢ Compute ksy, a polynomial in the four parameters q,, g2, g3, ga-

e To determine if a set of 2D data q,, g2, g3, g4 “‘matches” the 3D object, substitute the four numerical
values into ksy and see if the result is 0. If it is not, the 2D set cannot be a perspective projection of
the 3D object.

An important simplification results by reconsidering what is meant by “the result is 0”’. Rerall that
the coefficients of the polynomial ksy are rational numbers. Since we seek solutions of ksy: 0. we can
clear out denominators and assume that all coefficients are integers. Rather than work ovz: the ring of
integers, we can save enormously in both time and space if we choose a moderately large (20,000—
50,000) prime number p at random and reduce all the equations modulo this prime. We are then
working over the field Z,, and it is sufficient to test a candidate set of 2D parameters s), 2, 53, 54 by
reducing them modulo p and checking ksy(sy, 52, 53,54) = 0 in Z,,. The resulting modular algorithm is
probabilistic, with a very high probability of success. An incorrect set of parameters will not pass the
modular test unless ksy(s,, 52, 53, 54) is a multiple of p. The probability of that is no more than 1/p. A
correct set of parameters will pass it unless one of the parameters is a fraction with denominator a
multiple of p. Since p will be around 20,000, this seems extremely unlikely, and in any event would be
detected when the rational values sy, 55, 53, 54 are converted to values in Z,,. The probability of a mistaken
judgement can be further reduced by simply doing the algorithm twice with two different primes.

Lewis wrote programs to create the third matrix and compute ksy in his computer algebra system
Fermat [3]. One method is to compute the product of the pivot elements that come up as one normalizes

Conservatively, such a ksy would have at least 10° terms, probably more like 10'2.
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(say, into the Hermite form) the third matrix. One can learn the rank of this matrix very easily by
plugging in integers at random for the four g; parameters and computing a2 matrix normal form. The
matrix has rank 26. Therefore, ksy is the product of 26 terms that will appear on the main diagonal as
the matrix is normalized. Depending on the algorithm, these terms may not be all polynomials.
Nevertheless, the product of all 26 will be a polynomial. .

The row and column reductions went well, up to the 17th row/column. Beyond that the complexity of
the computation becomes overwhelming. However, it is not necessary to continue the normalization
algorithm. Recall that we have reason to think that any maximal rank submatrix will do. By substituting
random integers for three of the parameters ¢; it is easy to discover a 26 x26 maximal rank submatrix.
ksy is just the determinant of this fourth matrix. Since all its entries are (4 variable) polynomials, the
determinant algorithm in Fermat (there are several) which works by recursive Lagrange interpolation is
suitable. It completed in 3 h and produced a ksy with around 500,000 terms. (All times in this paper are
for a 233 mHz Macintosh with 604e chip.) It had degree 26 or 25 in each of the four g;. As an ASCII
file, this ksy occupied a file of 3.5 Mb.

To evaluate ksy at four numerical values took about 2 s, so this is feasible in real time. Extensive
testing with 2D data sets, valid and invalid, verified the correctness of ksy. This was all done using the
prime 44,449. Using 41,999 produced essentially the same results.

Wishing to look more closely at ksy, we returned to the idea of computing it by row reductions on the
third matrix, over the field Q, rather than Z,,. The first nine diagonal pivot elements were enlightening:

94— G2, 94 — @2, 94 — 92, 92(qa + q2), 92(94 + ¢2), (g3 + 1)(9s — q2),
(93 — 91)(qs — q2), (93 — 2q1)(gs — q2), (g5 — 1/2q1 + 1/6)(qs — q2)-

This suggests, but does not prove, that ksy has many simple factors. After much testing Lewis
verified that:

g4(qs — q2)* (g3 "41)4‘13(‘13 - 1/241 +1/6) (2)

is a factor. One of the Fermar determinant algorithms can take advantage of a known factor. It then
computed the rest of ksy (the other factor) in only 25 min, down from the original 3 h. This *“reduced
ksy” has 100,000 terms and occupies only 670 K of disk space. Numerical tests show that the actual
resultant is indeed a factor of the reduced ksy.

Even more extraneous factors can be removed from the reduced ksy. First, since the resultant must be
irreducible, we may divide out all the contents of ksy. Secondly, with different maximal rank
submatrices, simple variations of (1) divide their determinants (and this remains true for different
choices of 3D invariants, not just the values used here, 3, 4, 2, 3, 2, 3, 1, 2, 1/2). Thus, it is not hard to
compute another reduced determinant ksy’, and the true resultant should be a factor of GCD(ksy, ksy').
We have therefore the following algorithm:

res:=ksy;
- REPEAT
Compute new reduced ksy using a new maximal rank submatrix;
ksy:=ksylall contents(ksy);
res:=GCD(res, ksy)
UNTIL DONE
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After five repetitions of this loop, the polynomial res contained only 300 terms! It was small enough
to be factored with standard algorithms. The factor that vanishes on a known 2D data set is:

sixline = q}q; — 24145 + 84 + 6429394 + 1291934 — 604394 — 2419294 + 24794 + 28143
— @ + 842 — 24245 — 1414295 + 60203 — 16415 — 82 — 284192 + 8¢.

This was all done over a finite field, Z,. But the coefficients above are suggestively small integers.
Indeed, this is the actual resultant over Q not just over Z,. That is easy to prove: recall that each g;
may be solved for in d; = 0, then just substitute into sleme each g; with its formula in terms of the
other variables. The expression evaluates to 0. It is as if we had set out to use the Chinese Remainder
Theorem to find the resultant over @, and discovered that one prime was enough.

In summary, the polynomial sixline provides the solution to the problem for the given particular 3D
data set. If any set of 2D invariants be presented in the future, plug them into sixline. If the result is not
0, then they do not represent a perspective projection of the original object.

Now, our entire method, which we know has worked because sixline is verifiably correct, is based on
the Kapur-Saxena-Yang idea of computing the determinant of a maximal rank submatrix. In [2] they
show that the resultant must be a factor of any such determinant, provided that a certain condition
holds. This (sufficient) condition is that some column in the 105x105 second matrix be linearly
independent of all the others. However, in our case the condition fails! Yet the method works anyway.

It may be asked why it was necessary to produce the polynomial sixline at all. Instead, one could
simply take a candidate set of 2D invariants and plug them into the third matrix, whose rank is known to
be 26. If the rank drops, which is surely a simple thing to check, then the determinant of every maximal
rank submatrix must vanish on that 2D set.

To answer, there are several reasons why the derivation of the polynomial sixline is very desirable:

e It is not clear that the g.c.d. of all the maximal rank submatrices is exactly the resultant. If it is not,
there may be spurious zeros.

e The 2D invariunts {q,, g2, g3, g4} will probably be obtained by extracting and measuring lines on
photographs. Tt is necessary to match the six 2D lines with the six lines on the original 3D object.
This will probably require testing all 6!=720 possible permutations. The time saved in plugging the
{q;} into sixline versus finding the rank of the third matrix may not be significant, but it will be
multiplied by 720.

e We have been assuming that the 2D invariants are known exactly, but if they come from measure-
ments, there may be errors. Error analysis is much easier if it is based on the polynomial six/ine.

e In the following sections we generalize our method to produce a completely symbolic version of
sixline; i.e., we forego plugging in numerical values for the nine 3D parameters, and all 13 variables
appear in the resultant.

¢ It is possible to consider recognition of n lines by similar methods. However six is the minimum for
the problem to be meaningful; sets of five or fewer lines cannot be distinguished in this manner.

5. Phase Two

In Phase One we substituted numerical values for all parameters except g, 2, g3, g4. Lewis then
redid the computations keeping various other subsets of the parameters, such as the four p;;, the set
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{A1, A2, & 11, N2z}, and various combinations of the preceding with some of the g;. In this way we
learned the degree of the resultant in all of its parameters. Each degree is either 1 or 2. We learned also
that if we order the parameters so that the four g; have highest precedence, the leading term is
(A1, A2, P11, P22, P12, P21 )42 45, for some polynomial f in the indicated parameters only.

6. Phase Three

The work done in Phase One constitutes a viable solution to the Six-Line Problem, given the 3D data
of an object. But we want to compute the complete resultant for all objects, in all 13 parameters.

Grosshans et al. [1] were the first to compute this polynomial res, using invariant theory and
experimenting with lots of numerical cases, observing various dependencies among the variables and
exploiting various symmetries in the equation. They found a res with 239 terms. The final answer is
quartic in the 3D invariants and quartic in the 2D invariants, yielding a total degree 8. An alternative
approach by Stiller and Ma used interpolation by generating a large number of “matching” object
image pairs and exploiting the degree bounds predicted by Lewis. How do we know this polynomial is
correct? Recall that each g; occurs only in equation d; = 0 and can be solved for, yielding a rational
expression, for example:

g1 = (8haad, — gN1a128218% — npXeanad, + niyhoanas, + 2g\a120%,
—gA1a12a3, — N Aaah, + B daak, + 82 0aak, + npiands an — ni\iaas,az
~ghdd an — gh1a%anaz + ninnAai2a21a2
212008122102 + 111 \2a1282182 — g2 X2a1221G22 + RN A 1A12G2187
+125A1812821822 — 211 \A1282182 — 82 N1G1202122 — gh2G21a2
+8haban — ghia%,az — nnpXaanazx + nidanan + g hanan
FrnpAianan — mnAiapar, — 82Ma1282 + ghanay — nnpial,a,
FnpAia,ad, + g2 Nakhat, ~ ghaindd; + 2g\annas, + njnpnidlaz
—npMaai,an — g8 \ahan — nnnpialh,a + np\alaz + g2 hahan

2 2 2 2
— ghaanay + ghia12a21)/(8A2@12021a5; — gA1812a218, — N Xazay; + npAiazas,

+ g1 X0a128%, — g\181285, — np A a3, + npiab,

+n11 \aa12a3 az; — n a3 axn — ghaasan + ghias an

~gAi haad,a0102 + 2800a0a21a2 — gA1aT,021822 + N dad12a21a2
+n11 A1 A2a12a21G22 — 2n22X2a12821a22 + Ni1A2@12021a22 + N2 A1a128212
—2n1\anazaxn — 85\1/\20211222 — ghazan + 2gAazan

2 2
+gA1 A2at,ax — gAia,a2 — naAihaazazn + nAiAanax
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2 2

+npAiapazn — nAaan — gAihan + gA1ax — nipAAanas,
No@?a2, + gA dand®, — ghaapad, — ghihad ha

+n1102a7,a5; + A1 A2a12a7) — §A281285; — §A1A2a1,021 + §A2a1,A2)

2 2 2 2
+np A Xaalha21 — A AIAa1,a21 — N2 X0a15821 + N A2aTy021

+gA1 X2a12ay) — ghaar2azy)

Lewis simply substituted for each g; its expression as above into res-and checked that the result is
identically (symbolically) 0. (200 meg of RAM, 11 min, using Fermat. No other computer algebra
system that we are aware of could do this computation.)

We felt strongly that the Dixon-KSY method ought to work as well to compute res. But recall that
even after plugging in integers for 9 of the 13 parameters, the KSY method produced a 500,000 term
answer, almost all of which were spurious factors. Brute force is therefore rejected. Several ideas led
eventually to the solution.

The first idea, due to George Nakos, is as follows. Instead of applying the KSY method to four
equations {d; = 0} to eliminate the three variables {a2, 21, a2}, do it in stages:

e Apply KSY to {d|, d, ds} eliminating two variables, obtaining a polynomial y, that still has a;,.
o Apply KSY to {d,, d3, ds} eliminating two variables, obtaining a polynomial y, that still has a,,.
e Apply KSY to {y;, y»} to get the final res.

However, it is not that easy. Each y; would have had many millions of terms, making the third step
hopeless. Lewis applied two fairly standard ideas to reduce the size of each y;.

e Interpolation: Plug in authentic 3D values for some of the parameters. Run the above three steps with
enough such sets of values, then construct res with standard interpolation techniques.

e Quotient ring: We know that the final answer res is of low degree in each parameter; for example, it
is degree 2 in g and degree 1 in n;,. Analogously to working over Z, instead of Z, we could work
modulo a cubic polynomial in g and a quadratic polynomial in 7. This eliminates high degree (in g
and n,;) intermediate results while, ideally, not changing the final answer. Fermat allows one to work
easily and efficiently over such fields. '

While either technique alone might have sufficed, we decided to use both. There is a problem,
however, with the second technique, the well known leading coefficient problem. Suppose R is a
polynomial ring, say R = Fla, b, c, .. .]. Let ICR be an ideal such that R/ is a field. We wish to compute
in (R/DIx, y, z, . ..] instead of R[x, y, z, ...]. When working over such a quotient field, algorithms such
as polynomial g.c.d. dispense with leading coefficients involving the field variables a, b, c, .... The
leading coefficients are divided through to produce ‘“‘pseudo-monic” polynomials. This makes
reconstruction of the actual answer in R[x, y, z, . ..] problematic. But due to the work accomplished in
Phase Two, we know that the leading term relative to the g; is f(\1, M2, P11, P22, P12, P21)4-g2, for some
polynomial fin the indicated parameters. Therefore, by choosing to mod out by g and n;; we avoid this
problem. (We could mod out by np, in addition, but that greatly slows down the computations in
Fermat.)

In summary, we chose to work modulo g3 -3 and n% ,—7, and over the prime p=17041.
Z,(g,nn1)/{g® — 3,n3, — 7) is a field. We interpolated for A, A; and n5,. We know from Phase Two that
the answer is of degree 1 in each of the latter parameters, so we need to run the three steps eight times.




218 R.H. Lewis, P.F. Stiller/Mathematics and Computers in Simulation 49 (1999) 205-219

However, it still does not work. y; and y, each have about 300,000 terms and, worse yet, are of
high degree (>30) in a,,. That makes the third step unworkable. The problem is solved by recalling
from Phase One the idea of dividing out by the contents. Compute y; (12 min). Then compute all
its contents and divide out by them (123 min; 132 meg RAM). The result has only 90 terms! Repeat
for y,. Then do the third step (about 1 min). This produces a preliminary answer with a set of values
plugged in for A;, A; and ny,. We then repeat seven times and interpolate for the final answer. In doing
s0, one final problem arises. Because the contents were divided out often, the eight preliminary answers
may be missing leading numerical coefficients — another incamnation of the leading coefficient
problem. Especially likely is that one or more needs to be multiplied by —1. Since we know that
the final answer is a polynomial with integer coefficients, it is easy to experiment and corapute the
right answer.

7. Conclusion

Elimination in stages using the Cayley-Dixon-Kapur—Saxena-Yang method succeeded for two
reasons:

1. The final answer is of low degree in most of its variables (in fact, all of them).

2. At each stage, polynomials are produced that are multiples of the resultant, with huge spurious
factors. But the resultant is the only factor involving all the variables. It can therefore be found by
dividing out all the contents.

Unless there is something very special about the equations that came up in this problem, it is
reasonable to conjecture that our successive elimination method with KSY may be applicable to other
large polynomial systems.
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Appendix A
A. The four equations
o Nine 3D parameters: A;, Az, n11, 122, § P11s P12s P21» P22

¢ Four 2D parameters: ¢, 42, g3, 4a4-
e Four conversion variables (later we set a;,=1): ay, a12, a21, @22.
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¢ Four equations dy, d, ds, d4 in the three variables a;; and the 13 parameters Note that g; appears only
in d; and only with exponent 1.

d = (gaf, + gajiaz + nnanagn + anaxng — nanap — apadzing

—ga’y — ganan)(—Xaazy — hazan + Manan + Maznax — Ahanaxn
+A1\2a12a21)q; — (—ganan — 8031 — n2a12a2) — hnad21a2; + N11411022
+nyaza + ganan + ga§2 —ayanpnnyg + 01102282 + ajzazinyn2

—apaz g®)(Meanan + anjapls — Aianan — apan i),

dy = (80?1 -+ ganay; + npanay; + aypannz — nanan — apa i

—ga’, — gapan)(anaxn — apay — anank; + apanAi)qz — (@nax — apaz — ganaz)
—ajanny + apayny + gapaxn)(Xanan + anank — Aianapn — anaz ),
dy = (Pl2a%1 + pr2anaz; + pnana; + ananp — pnaiaz — a;apl
D@y — pr1a1an)(—Xanay — hanaxn + Aanaxn + Maznan — Aianan
+A1A2a12821)g3 — (—P12811821 — P1283) — P22a12821 — P2a21G22 + P11G1182
+p11a21a2; + P21a12a2 +pzla§z — a|1axp11p22 + a11a22p12p21 + 412a21P11P22
—apaypipa)(deanaz + anani; — \aja; — apan ),

dy = (szafl + p12anaz + p22ayaz + anaxnp — p1iana2 = a12a21p11
—pnal, = paiaaz)(anan — anax — anani; + apani)gs — (anax
—apay) — p12a11a21 — A11G0P2 + a12a21P11 + p21a12a22) (Meana + anani;

—Aanajz — apa).
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ABSTRACT

We discuss a new geometric hashing method for searching large databases of 2D images (or 3D objects) to match a
query built from geometric information presented by a single 3D object (or single 2D image). The goal is to rapidly
determine a small subset of the images that potentially contain a view of the given object (or a small set of objects
that potentially match the item in the image). Since this must be accomplished independent of the pose of the
object, the objects and images, which are characterized by configurations of geometric features such as points, lines
and/or conics, must be treated using a viewpoint invariant formulation. We are therefore forced to characterize these
configurations in terms of their 3D and 2D geometric invariants. The crucial relationship between the 3D geometry
and its “residual” in 2D is expressible as a correspondence (in the sense of algebraic geometry). Computing a set of
generating equations for the ideal of this correspondence gives a complete characterization of the view independent
relationships between an object and all of its possible images. Once a set of generators is in hand, it can be used to
devise efficient recognition algorithms and to give an efficient geometric hashing scheme. This requires exploiting the
form and symmetry of the equations. The result is a multidimensional access scheme whose efficiency we examine.
Several potential directions for-improving this scheme are also discussed. Finally, in a brief appendix, we discuss an
alternative approach to invariants for generalized perspective that replaces the standard invariants by a subvariety
of a Grassmannian. The advantage of this is that one can circumvent many annoying general position assumptions
and arrive at invariant equations (in the Pliicker coordinates) that are more numerically robust in applications.

1. INTRODUCTION

Content-based retrieval of information from large databases that keys on visual/geometric information contained in
images, schematics, design drawings, and geometric models of environments, mechanical parts or molecules, etc., will
play an increasingly important role in future distributed information and knowledge systems. This paper focuses
on two aspects of geometric content-based retrieval for knowledge acquisition. The first concerns geometric hashing
techniques for matching geometric configurations of features in a database of 3D objects to a geometric configuration
of features in a single 2D image or, vice versa, matching geometric configurations of features in a database of 2D
images to a gecraetric configuration of features on a single 3D object. The second, dealt with in an appendix,
describes an alternative to classical invariants that associates to a particular geometric configuration an invariant
subvariety of a Grassmannian. Equations for this subvariety in the Pliicker coordinates of the Grassmannian serve
as “invariants” of the configuration. The advantage of these “invariants” is that one can circumvent many annoying
general position assumptions; resulting in more numerically robust versions of the object/image equations used to
match 3D and 2D configurations of features.

2. THE SET-UP

In}2 we describe a technique for using geometric information contained in 2-D images to search large databases of
3-D models in the special case where the geometric information consists of finite point configurations. This technique
exploits certain polynomial relations known as object/image equations between invariants assigned to the 2-D and
3-D feature sets. The resulting scheme is independent of changes in scale and perspective. Here, we describe a
technique for constructing a hashing scheme based on this technology.

Recall that the object/image equations are polynomial relations in the combined set of geometric invariants
associated to a 3D configuration and those associated to a configuration in a 2D image. They completely describe
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the mutual 3D/2D constraints?34, and can be used in a number of ways. For example, from a given 2D configuration
one can determine a set of non-linear polynomial constraints on the geometric invariants of those 3D configurations
capable of producing the given 2D configuration in an image. This results in a test for limiting the poss:ibilit‘ies for
the object is being viewed. When applied to searching a database of objects to find likely matches to a given image,
this test can then be used as 2 filter to remove objects from further consideration, leading to at a greatly reduced set
of objects which must be more carefully considered. While the object/image formalism applies to much more general
feature sets, the case of point configurations is especially simple. Its performance for single view recognition of
point configurations was investigated in.! In this paper we describe the use of these equations for setting up an
index (hashing scheme)into a large data base of 3D point configurations for rapid query by 2D images. In order to
rule out groups of objects the index uses the object/image equations to determine if any object in a region of the
“invariants space” for objects matches a given image.

We will work in the general perspective case. To facilitate this, ordinary points (z,y,z2) € R® or gu,v) € R? are
represented in homogeneous coordinates in the respective projective space IP? or projective plane P<:

z
u

y eP® or v | eP?

z

1 1

Image formation is accomplished by a general perspective projection M, which is a 3 x 4 matrix of rank 3. Viewed
as a rational map from PP3 to IP?, M takes (z,y,2) to (u,v) whereu= % and v = £ and

=M

& & &
i B -3 ; ]

This transformation is undefined at one point (a : 8: v : §) € IP?, which is the focal point of the projection (the null
space of M). A typical example is :

OO =

0 00
100
011

which takes (z,y, z) to (u,v) where
z y

= v =
v 241 z+1

and which is undefined at (0 : 0 : —1 : 1). This is perspective projection onto the zy-plane through the point
(0,0, —1). Such projections are examples of the standard “pinhole camera” model of image formation.®

In general, we will have a parameter space of point configurations in 3D or 2D. These features will be subject
to general projective transformations (the group PGLs in space or PGL3 in the plane) resulting in a notion of
equivalent configurations. This physically reflects a “change of point of view” in IP® or in IP®. The basic invariants
we construct are functions of the configurations that remain unchanged under a projective transformation. They
provide coordinates on a portion of the space of equivalence classes of configurations. In practice, one must deal
with several of these “coordinate patches”. (To avoid “coordinate patches” by using more “global” invariants, see
the appendix.)

3. THE OBJECT-IMAGE EQUATIONS

With the 3D and 2D invariants in hand, we can construct the basic equations between them that reflect the com-
plete set of view independent constraints that must hold between 3D configurations and their images in 2D under
perspective projection. It will be convenient to represent configurations of m points in P¢ by (d + 1) x m matrices
A = [P]...|Pp], whose columns are homogeneous coordinates for the points P;. As homogeneous coordinates are
defined only up to scalar multiples, we can multiply A on the right by an arbitrary invertible m x m diagonal matrix
without changing the point configuration it represents. We also see that multiplying on the left by an invertible
(d+1) x (d + 1) matrix has the effect of applying a common projective transformation to the points of A. Thus two
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(d+ 1) x m matrices represent equivalent objects if we can convert one to the other by elementary row operations and
non-zero column scaling. Using a slightly modified version of Gaussian elimination, we can compute a fundamental
set of invariants for a matrix representing m points in space (i.e. in IP°) by moving the first 5 points to a “standard
position.”

ail...am,1 «+ 00 01 P6.0---Pm,0
a12...am2 | {0 * 0 0 1 pe1...pma
a)3...Gm3 0 0 = 01 P62---Pm2
a14...0m4 0 00 * 1 ps3---Pms3

Similarly for points in IP? we move the first 4 points to standard position:

Q11...0m,1 *+ 0 01 g50---9m.0
€12.--8m2 | ~1 0 x 0 1 gs:-.-gm1
ai3..-Gm3 0 0 * 1 gs2---9m,2

In effect we are moving P to the point in projective space with homogeneous coordinates {1:0: 0 : 0], P; to
[0:1:0:0] and so on, with Ps moving to [1:1:1:1]. This presupposes that Py, P;, Ps, P are not co-planar and
that P is not co-planar with any three of Py, P2, P3, Py, i.e. we are assuming that Pi,..., Ps are in general position.
Actual generators for the field of invariant rational functions under projective transformations on the moduli space

of m-tuples of points in IP® are {’—° Bil Bi2  fari=@,... ,m}. (Strictly speaking, to have a reasonable moduli,

Pi3’ pi.3’ pis
one must restrict to “stable” or “semi-stable” m-tuples.?)

These particular functions provide coordinates on an open subset of the quotient space of m-tuples modulo the
action of PGLy, the group of projective transformations on IP2. This open subset I'3,...3 is defined by the non-
vanishing of the coordinates p; 3 for i = 6,...,m in addition to the general position assumption on P, .. ., Ps. We
can similarly define T'g,,.. 4., to be the open subset defined by the general position assumption on Pi,..., Ps along
with the non-vanishing of p; 4, for i = 6,...,m and analogously arrive at affine coordinates on each Fdg....dn -

For reasons of numerical stability and in order to avoid imposing any assumptions on the points aside from the
general position of Pi,.. ., Ps, we work with the homogeneous coordinates p; j rather than with any particular set of
affine coordinates (ratios of the p; ;).

If some other subset of five points from among P, ..., P, were in general position, while Py, ..., Ps were not, we
would simply work in a different open subset of the quotient manifold with the invariant coordinates on that open
subset; making use of the obvious change of coordinates to adjust our formulas below.

The object-image equations for this case were derived for the affine coordinates above in, and reformulated for
homogeneous coordinates in.!

THEOREM 3.1. If Q1,...,Qm are the images of P\,..., Py, under a pers.ective transformation then the relations
El; =0 and E26x = 0 hold for j =6,...,m and k= 17,...,m, where

El; = (-pjopj1+P;j0P;i3)9s.08:2 +
(—=Pj.0p;3 + P;.2P5,0)5,195.0 +
(=pj2pia + P;3Pi1)95,1050 +
(Pj2Pj1 = P32P;,3)45,095,2 +
(=pjapia + Pjop;1)85,1952 +
(—Pj.2pj0 + Pj,2P;j,3)45.195.2

E2.x = (=pr.apeo + Pr3P6.0)35.006.2Gk,2 +
(~Pk.3P6,0 + Pk,2P6,0)95,096.29k.1 +
(—Pk.2Ps,3 + Pr.3P6.2)95,296.09k.1 +
(Pk,1P6.0 — Px.1P6.3)96,295,19k,2 +
(Pk.2P6.3 — Pk.2P6,0)95.296.20k,1 +
(Pk,1P6,3 — Pk,1P6.2)96.095,19k 2 +
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(Pr.1P6.2 — Pk.3P6.2)45.296,09k,2

Furthermore for any k > 7 we can interchange the roles of the indices k and 6 in E2¢ (i.e. use E2;¢ instead
E2yx). Since these equations are all of a fixed size, we can test the object/image correspondence in time linear in
m. Looking carefully at them one sees that no variable p;; or g;; appears in any term with degree higher than 1.
This fact will be very useful when setting up our indexing schemes because it allows us to determine if the equations
can have solutions in coordinate boxes: :

PROPOSITION 3.2. If F is a real valued multi-linear function in the variables zi,...,Zn, and B? = {z € R"a; <
2 < Bi, i=1...,n}, then F achieves its extreme values over Bg at the vertices of Bg.

COROLLARY 3.3. F(x) is non-zero for all X in Bg if and only if F is positive on all vertices of Bg or negative on
all vertices of B2.

Once the projective invariants (the g;;) for an image are specified and the object invariants are treated as affine
coordinates on a particular I'gq.... d.., the polynomials (dehomogenized with respect to the pia; i = 6,...,m) become
multi-linear functions of those 3(m — 5) object invariants. Naively this tells us that to check if an equation E1; or
E2; x vanishes in a box in “object space” we need 23m=15 evaluations. But looking carefully at the equations El;
we see that they each involve only the homogeneous coordinates for P;, and thus in any of our affine charts involve
only three variables. Since E2¢ s and E2 ¢ involve only the homogeneous coordinates pg,; and pk,; they can involve
at most 6 variables in any affine chart. In fact, not all of the ps; and pi; appear, and we can show that in any of
the affine charts at least one of these two equations will involve 5 or fewer variables:

THEOREM 3.4. Given known projective invariants for an image configuration of points and e boz B in some affine
chart of object space, we can determine if E1; vanishes in BE with 8 = 23 evaluations. For one of the two equations
E2x and E2; 6 this question can be answered with at most 32 = 2° evaluations.

Note that the E1; and E2x are homogeneous polynomials in the homogeneous coordinates. Thus while it does
make sense to talk about them vanishing, their values are not defined when they don’t vanish. In order to use
the equations to measure how close an object and image come to matching, one must resolve this ambiguity by
specifying a way to dehomogenize. In order to be able to use Theorem 3.4, we scale the “projective invariant” points
(i.e. columns 6 through m of the “standard position” matrix) for the object so that all coordinates have absolute
value less than or equal to one, and at least one coordinate in each column is equal to one. For the image invariants
we are free to choose any particular normalization we please. In,! we investigated the performance of several choices
of normalization in the presence of noise.

4. INDEXING/HASHING

In this section we will describe an indexing scheme based on the object-image formalism and then describe its
implementation in the case of point configurations as described above. Here we are assuming a large data base of 3D
models to be queried by a 2D image for all objects which match the image. For generality, we describe the database
as storing points in some data-space, and querying by proximity to a query-loci. Two operations are supported:
adding points (objects) to the data base and querying it.

The basic idea is that will we represent the objects in our data base as points in the appropriate space, and use
the object-image equations to determine if they match or approximately match a query image. In other words, we
will be looking for all objects on or near an algebraic subset of the object space defined by the vanishing of the
equations in the previous section when the image invariants g; ; have been specified. The simplest way to do this is
to simply store all the objects and check the equations for each object once the invariants for the query image are
known. Our approach to avoiding the necessity of checking each and every object is a modified multidimensional
access scheme. For a survey of multidimensional access methods we refer the reader to.®

The index takes the form of a tree whose nodes B (or boxes) consist of a data-range, denoted range(B), repre-
senting a subset of the data-space and a data list data(B). If B is a leaf of the tree, the data list will contain those
data points in range(B). For interior nodes B, the data list consists of boxes B; whose ranges form a covering of
range(B) by subranges. While we do not require the subranges in B to be disjoint, we make the tacit assumption
that the overlap is small and very few objects lie in more than one box of a subdivision.
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Figure 1. Indexing Example

The data base begins with a list of top-level boxes which cover the data-space and is built up by adding data-
points one at a time. Adding a point P to a box B proceeds as follows: If P is in range(B) then we add P to the
list data(B) if B is a leaf, or we add P to each node on the list data(B) if B is interior. Whenever the data list of a
leaf becomes too full it is made an-interior node by subdividing its range and re-adding it’s data points. Querying
proceeds similarly, one starts a query at each top level box and dscends to query children any time the query-locus
passes through the boxes data region.

In order to implement this scheme, one must specify the data-space, query-loci, data-ranges as well as:

o A covering of the data-space by data-ranges.

An algorithm for subdividing a range.

An algorithm to determine if a data-point lies in a data-range.

An algorithm to determine if the query-loci passes through a data-range.

An algorithm to determine if the query-loci matches a particular data-point.

One embellishment that we do use in practice is to maintain two ranges, an exterior range used when adding.
points, and an interior range used when searching. The interior range is maintained so that it is always just blg.f
enough to hold the data points actually in the box or in its subtree. 3

As a simple example, we might take our data-space to be composed of points in the two dimensional box [~1, 1] '
[-1,1], our query-regions to be lines, and our ranges to be boxes of the form [a,3] x [c,d]. As a covering we just me
the box [-1,1] x [-1,1] 1tself subdivision can be accomplished by dividing a box with sides of length L into fou
boxes with sides of length £ 7 and, of course, testing to see if a point lies in a box is trivial. As for querying, if
query line has the equation Az + By + C = 0 we use the magnitude of Az + By + C as an indication of fit.
test to see if a query-region matches anything in data-range is easy if we recall that a linear functional ach:eves i
maxima at the vertices of a box.

Our indexing scheme for object data bases is very similar to the example above. The query-regions will be subs
of objects matching a given image. The data space is described by the 4™~° charts mapping subsets of the.
Cg.....d,. onto a copy of the coordinate box B T C "R¥™~5)_ For data-ranges we take coordinate boxes
R* =15 As in the example, determining if a data-pomt (an object) lies in a data-range is trivial, and we can smr
take subdivision into 23™~15 sub-boxes by dividing each edge in half. Finally Proposition 3.2 allows us to chef
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query locus passes through a box efficiently by evaluating the individual terms E1; and E2g ; on a subset of the
rertices :
The performance of the indexing has been tested and the results will be reported on in future work.

5. APPENDIX: INVARIANTS REPRISED

.In this section we will consider a more geometric approach to invariants and the object/image equations used in our
indexing algorithm above. For simplicity we will consider the case of six points (z;,y;,2:) i = 1,...,6 in R®

Ty X2 g

i Y2 ... Y

21 29 26
1 1 1

arrayed in a 4 by 6 matrix. Our only assumption will be that the points do not all lie in a plane, or equivalently that
the rank of the matrix is 4. '

Since we plan to use perspective projection, it is more appropriate to work in projective 3-space IP* where we
use homogeneous coordinates for our points. (Hence the row of 1’s in our matrix.) We could in fact carry out our
discussion starting with any 4 x 6 matrix of rank 4 none of whose columns are zero

ay (2]
M= by ... bg
1 Ce
d dg

The ambiguity of homogeneous coordinates can be captured by allowing multiplication on the right by an arbitrary
non-singular diagonal matrix

D = D(ay,...,a¢) = a; #0.

coocoof
coocof o
cocof oo
ool ooco
ol oococo

coooco

R
S

Each a; acts as a scale facior in the it column.

In effect, we are considering six points in P® that are not coplanar. The principal invariance we are concerned
with is invariance under the action of projective general linear group PGL4 on IP®. These transformations are

. represented by the action of 4 x 4 invertible matrices on the left. Notice that a scalar matrix acts trivially in this

context since it does not change the point in /P® that each column represents.

Now viewing M as a linear map from RR® to IR*, we have a kernel (null-space) K2 which is a plane in R® through
the origin. Notice that if we multiply M on the right by a 4 x 4 invertible matrix A the new 4 x 6 matrix M’ = AM
still has K? as kernel. Thus K2 is a kind of “invariant” for M. The set of all two dimensional linear subspaces of
IR has a natural structure of a manifold, the Grassmanian Gr(2, 6), which is compact and 8 dimensional. We can
regard K2 as a point in Gr(2,6).

Now we are working with 6 points in P° and their homogeneous coordinates as the columns of M, and so we
must confront the problem of scaling in the columns. As mentioned, this is equivalent to acting on M on the left by

D = D(ay,...,as) a diagonal matrix. If a; = a3 = --- = ag then the new 4 by 6 matrix M’ = MD has the same
kernel K2 as M, but if the a; are not all equal the kernel changes. As ay,...,as vary we get a family V° of two
dimensional subspaces of RS, namely the kernels K%(ay,...,ag) which are functions of ai,...,as. VS (actually its

Zariski closure) is a 5-dimensional toric subvariety of Gr(2,6), V® c Gr(2,6), it is an invariant of our 6§ points in IP3
under the action of PGLy. .

The fact that V® has codimension 3 in the eight dimensional Grassmannian is no accident. Three is precisely the
number of independent fundamental invariants for 6 points in /P° under projective linear transformations.
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Using the Pliicker embedding of Gr(2,6) in P'* we can find equations for V° in the Pliicker coordinates (the
determinants of the fifteen 4 by 4 minors of M ).

Now the key point. Suppose we project into the plane IP? via perspective projection. This can be achieved by
premultiply our 4 x 6 matrix M by a 3 x 4 matrix of rank 3. The resulting matrix N = TM has columns representing
the homogeneous coordinates of the images of our six points in some coordinate system on the plane P2,

N has a kernel which is a2 3-dimensional subspace H? of RS. The key observation is that, if K2 is the kernel
6f M and N = TM, then the kernel H3 of N contains K?! Of course this is too simple. The real requirement is
that H® contain K?(ai,...,as) for some choice of the ;, i.e. the curve in Gr(2,6) which is the Schubert cycle of
planes through origin in H% ¢ IR® must meet V3. This can be expressed in polynomial terms and can serve as an
alternative to our object image equations above. These equations will be global in the sense that no special position
assumptions, beyond the points not being coplanar in 3D or collinear in 2D, are required. In addition this approach
will be more robust in applications; something we will discuss in a future paper.

As a concrete example, consider a smaller problem. Let's take a 2 by 4 matrix of rank 2

_ ay a2 a3 Qa4
M‘(bl by b 64)

none of whose columns is zero. This corresponds to choosing 4 points in the projective line IP'. A special case is
Iy T2 T3 X4
1 1 1 1

consisting of four points z; fori=1,...,4in R!.

The Pliicker coordinates of M are (M2 : My : Mg : Mag : Maq : Msq) € IP® where M;; = det ( ‘; 2 ) The

Pliicker relation
M2 M3zq — MiaMag + MigMo3 =0

holds and cuts out Gr(2,4) in P5.

Now let K2 be the kernel of M. The Pliicker coordinates of K? can be shown to be (K12 : Ki3 : K14 : Koz :
K24 : K34) where

K2 = M3, Ka3 = M4
K3 = —My Ky = —My3

K4 = M3 K34 = My

As we vary K2 by multiplying M on the right by a diagonal matrix

g 0 0 0
_ 0 ao 0 O
D(ay, 2,03,04) = 0 0 a3 O
0 0 0 [+ 7]

we sweep out the “invariant” variety V3 C Gr(2,4) C IP°. In parametric form V3 is given by

(X12: X3 : X1 : Xoz : Xoq: Xag) =
(a3aaMas : —azasMaq : azazMas : ayoas My 1 ~anasMy; @ ajaaMy,).

Of course the Pliicker relation

X12X34 — X13X24 — X14X23

holds. To describe V3 in Gr(2,4) we need one additional equation. This is of course equivalent to usual the cross
ratio!
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